

Chapter 7.1,2

Sinusoids and Complex Math

Engr228-Circuit Analysis
Spring 2020

Dr Curtis Nelson

Sections 7.1,2 Objective

- Review sinusoidal representation and complex math.

Properties of a Sinusoidal Waveform

The general form of sinusoidal wave is

$$
v(t)=V_{m} \sin (\omega t+\theta)
$$

where:

- $\quad V_{m}$ is the amplitude in peak voltage;
- ω is the angular frequency in radian/second, also $2 \pi f$;
- q is the phase shift in degrees or radians.

Frequency Review

Period ≈ 6.28 seconds, Frequency $=0.1592 \mathrm{~Hz}$

Amplitude Review

Peak: Blue 1 volt, Red 0.8 volts
Peak-to-Peak: Blue 2 volts, Red 1.6 volts Average: 0 volts

Red leads Blue by 57.3 degrees (1 radian) $\quad \phi=\frac{1}{6.28} \times 360^{\circ}=57.3^{\circ}$

More on Phase

- The red wave $\left[V_{M} \sin (\omega t+\theta)\right]$ leads the wave in green by θ;
- The green wave $\left[V_{M} \sin (\omega t)\right]$ lags the wave in red by θ;
- The units of θ and ωt must be consistent.

Basic AC Circuit Components

- AC Voltage and Current Sources (active components)
- Resistors (R)
- Inductors (L) (passive components)
- Capacitors (C)
- Inductors and capacitors have limited energy storage capability.

AC Voltage and Current Sources

Voltage Sources

AC $\bigodot_{-}^{+} 10 \sin (2 \pi t+\pi / 4)$

Current Sources

Amplitude $=10 \mathrm{~V}_{\text {peak }}$
$\omega=2 \pi$ so $\mathrm{F}=1 \mathrm{~Hz}$ Phase shift $=45^{\circ}$

Sinusoidal Steady State (SSS) Analysis

- SSS is important for circuits containing capacitors and inductors because these elements provide little value in circuits with only DC sources;
- Sinusoidal means that source excitations have the form $V_{S} \cos (\omega t+\theta)$ or $V_{S} \sin (\omega t+\theta)$;
- Since $V_{S} \sin (\omega t+\theta)$ can be written as $V_{S} \cos (\omega t+\theta-\pi / 2)$, we will use $V_{S} \cos (\omega t+\theta)$ as the general form for our source excitation;
- Steady state means that all transient behavior in the circuit has decayed to zero.

Sinusoidal Steady State Response

The SSS response of a circuit to a sinusoidal input is also a sinusoidal signal with the same frequency but with possibly different amplitude and phase shift.

Review of Complex Numbers

- Complex numbers can be viewed as vectors where the X -axis represents the real part and the Y -axis represents the imaginary part.
- There are two common ways to represent complex numbers:
- Rectangular form: $4+j 3$
- Polar form: $5 \angle 37^{\circ}$

Complex Number Forms

Rectangular form: $a+j b$

$$
\rho=\sqrt{a^{2}+b^{2}}
$$

Complex Math - Rectangular Form

$$
\mathbf{p}=\mathbf{a}+j \mathbf{b} \quad \mathbf{q}=\mathbf{c}+j \mathbf{d}
$$

- Addition and subtraction

$$
\begin{aligned}
& \mathrm{x}=\mathrm{p}+\mathrm{q}=(\mathrm{a}+\mathrm{c})+j(\mathrm{~b}+\mathrm{d}) \\
& \mathrm{y}=\mathrm{p}-\mathrm{q}=(\mathrm{a}-\mathrm{c})+j(\mathrm{~b}-\mathrm{d})
\end{aligned}
$$

- Example

$$
\begin{aligned}
& \mathbf{p}=\mathbf{3}+\boldsymbol{j} \mathbf{4} \quad \mathbf{q}=\mathbf{1}-\boldsymbol{j} \mathbf{2} \\
& \mathrm{x}=\mathrm{p}+\mathrm{q}=(3+1)+j(4-2)=4+j 2 \\
& \mathrm{y}=\mathrm{p}-\mathrm{q}=(3-1)+j(4-(-2))=2+j 6
\end{aligned}
$$

Complex Math - Rectangular Form

$$
\mathbf{p}=\mathbf{a}+j \mathbf{b} \quad \mathbf{q}=\mathbf{c}+j \mathbf{d}
$$

- Multiplication (easier in polar form)

$$
\mathrm{x}=\mathrm{p} \times \mathrm{q}=\mathrm{ac}+j \mathrm{ad}+j \mathrm{bc}+j^{2} \mathrm{bd}=(\mathrm{ac}-\mathrm{bd})+j(\mathrm{ad}+\mathrm{bc})
$$

- Example

$$
\begin{aligned}
\mathbf{p} & =\mathbf{3}+\boldsymbol{j} \mathbf{4} \quad \mathbf{q}=\mathbf{1}-\boldsymbol{j} \mathbf{2} \\
\mathrm{x} & =\mathrm{p} \times \mathrm{q}=[(3)(1)-(4)(-2)]+j[(3)(-2)+(4)(1)] \\
& =11-j 2
\end{aligned}
$$

Complex Math - Rectangular Form

$$
\mathbf{p}=\mathbf{a}+\boldsymbol{j} \mathbf{b} \quad \mathbf{q}=\mathbf{c}+\boldsymbol{j} \mathbf{d}
$$

- Division (easier in polar form)

$$
x=\frac{p}{q}=\frac{a+j b}{c+j d}=\left(\frac{(a+j b)(c-j d)}{(c+j d)(c-j d)}\right)=\left(\frac{(a c+b d)+j(b c-a d)}{c^{2}+d^{2}}\right)
$$

- Example

$$
\begin{aligned}
& \mathbf{p}=\mathbf{3}+\boldsymbol{j} \mathbf{q} \quad \mathbf{q}=\mathbf{1}-\boldsymbol{j} \mathbf{2} \\
& x=\frac{p}{q}=\frac{((3)(1)+(4)(-2))+j((4)(1)-(3)(-2))}{1^{2}+(-2)^{2}}=\frac{-5+j 10}{5}=-1+j 2
\end{aligned}
$$

Euler's Identity

- Euler's identity states that $\mathrm{e}^{j \theta}=\cos (\theta)+j \sin (\theta)$
- A complex number can then be written as:

$$
\mathrm{r}=\mathrm{a}+j \mathrm{~b}=\rho \cos (\theta)+j \rho \sin (\theta)=\rho[\cos (\theta)+j \sin (\theta)]=\rho \mathrm{e}^{j \theta}
$$

- Using shorthand notation, we write this as:

$$
\rho \mathrm{e}^{j \theta} \equiv \rho \angle \theta
$$

Imaginary axis

Complex Math - Polar Form

$x=a+j b=\rho e^{j \theta}=\rho \angle \theta \quad \rho=\sqrt{a^{2}+b^{2}} \quad \theta=\tan ^{-1}\left(\frac{b}{a}\right)$
$p=m_{1} e^{j\left(\theta_{1}\right)} \quad q=m_{2} e^{j\left(\theta_{2}\right)}$

- Addition and subtraction - too hard in polar so convert to rectangular coordinates.
- Multiplication

$$
z=p \times q=m_{1} m_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}
$$

- Example

$$
\begin{array}{lll}
p=6 e^{j\left(\frac{\pi}{6}\right)} & q=2 e^{j\left(\frac{\pi}{2}\right)} & z=p \times q=(6)(2) e^{j\left(\frac{\pi}{6}+\frac{\pi}{2}\right)}=12 e^{j\left(\frac{2 \pi}{3}\right)} \\
p=6 \angle 30^{\circ} & q=2 \angle 90^{\circ} & z=p \times q=12 \angle 120^{\circ}
\end{array}
$$

Complex Math - Polar Form

$$
x=a+j b=\rho e^{j \theta}=\rho \angle \theta \quad \rho=\sqrt{a^{2}+b^{2}} \quad \theta=\tan ^{-1}\left(\frac{b}{a}\right)
$$

$$
p=m_{1} e^{j\left(\theta_{1}\right)} \quad q=m_{2} e^{j\left(\theta_{2}\right)}
$$

- Division

$$
z=p \div q=\frac{m_{1}}{m_{2}} e^{j\left(\theta_{1}-\theta_{2}\right)}
$$

- Example

$$
\begin{aligned}
& p=6 e^{j\left(\frac{\pi}{6}\right)} \quad q=2 e^{j\left(\frac{\pi}{2}\right)} \\
& z=p \div q=\frac{6}{2} e^{j\left(\frac{\pi}{6}-\frac{\pi}{2}\right)}=3 e^{j\left(-\frac{\pi}{3}\right)}=3 \angle-60^{\circ}
\end{aligned}
$$

More on Sinusoids

- Suppose you connect a function generator to any circuit containing resistors, inductors, and capacitors. If the function generator is set to produce a sinusoidal waveform, then every voltage drop and every current in the circuit will also be a sinusoid of the same frequency. Only the amplitudes and phase angles will (may) change.
- The same thing is not necessarily true for waveforms of other shapes like triangle or square waveforms.
- Fortunately, it turns out that sinusoids are not only the easiest waveforms to work with mathematically, they're also the most useful and occur quite frequently in realworld applications.

Phasors

- Aphasor is a vector that represents an AC electrical quantity such as a voltage waveform or a current waveform;
- The phasor's length represents the peak value of the voltage or current;
- The phasor's angle represents the phase angle of the voltage or current;
- Phasors are used to represent the relationship between two or more waveforms with the same frequency.

Sections 7.1,2 Summary

- Reviewed sinusoid representation and complex math.

